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Abstract: The recent study concentrates on the simple matrix grammars using the leftmost deriva-
tions. It defines several leftmost derivation modes and investigate their influence on the generative
power of simple matrix grammars. We especially focus on the limiting of the number of components
of simple matrix grammars.
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1 INTRODUCTION

Simple matrix grammars were introduced in [1] by O. H. Ibarra in 1970. Several studies on their
generative power and their leftmost variants were published during the next years. Later on, they start
disappearing from the forefront. In this paper, we continue with the study of simple matrix grammars,
namely with the leftmost simple matrix grammars introduced in [3] by H. A. Maurer.

Primarily, we refine the definition of leftmost simple matrix grammars. Three leftmost derivation
modes of simple matrix grammars are defined and investigated. The definition of the derivation mode
does not influence the definition of the grammar, only the way the derivation steps are performed may
be changed. As we prove next, it can significantly influence the generative power without changing
the definition of the used model. While, without leftmost derivations it is not even possible to generate
all type 1 languages, with some of the defined leftmost derivation modes it is possible, and moreover,
the number of necessary components is decreased to 2 or 3.

Due to the shortage of space, this contribution does not include whole proofs of all results.

2 PRELIMINARIES

We assume that the reader is familiar with formal language theory (see [5, 6]) especially with regu-
lated grammars (see [4]). Let V be an alphabet (finite nonempty set). V ∗ is the set of all strings over
V. Algebraically, V ∗ represents the free monoid generated by V under the operation of concatenation.
The unit of V ∗ is denoted by ε. Set V+ = V ∗−{ε}. Algebraically, V+ is thus the free semigroup
generated by V under the operation of concatenation. For w ∈ V ∗, |w| denotes the length of w. The
alphabet of w, denoted by alph(w), is the set of symbols appearing in w.

Let ρ be a relation over V ∗. The transitive and transitive and reflexive closure of ρ are denoted ρ+

and ρ∗, respectively. Unless we explicitly stated otherwise, we write x ρ y instead (x,y) ∈ ρ.

The families of context-free, context-sensitive and recursively enumerable languages are denoted
by CF, CS and RE, respectively.

3 DEFINITIONS AND EXAMPLES

In this section, we define simple matrix grammars and their leftmost variants.



Definition 1. Let n≥ 1. A simple matrix grammar of degree n (nSMG for short) is an (n+3)-tuple

Gn = (N1,N2, . . . ,Nn,Σ,P,S),where

(1) N1, . . . ,Nn are finite nonempty pairwise disjoint sets of nonterminal symbols;

(2) Σ is a finite nonempty set of terminal symbols, Σ∩Ni = /0, for 1≤ i≤ n;

(3) S is not in N1∪·· ·∪Nn∪Σ and is called the start symbol;

(4) P is a finite set of rewriting rules of the form:

(a) (S)→ (v), v ∈ Σ∗.

(b) (S)→ (v1v2 . . .vn), vi ∈ (Ni∪Σ)∗, alph(vi)∩Ni 6= /0, for 1≤ i≤ n.

(c) (A1,A2, . . . ,An)→ (v1,v2, . . . ,vn), Ai ∈ Ni, vi ∈ (Ni∪Σ)∗, for 1≤ i≤ n.

Definition 2. Let
Gn = (N1,N2, . . . ,Nn,Σ,P,S)

be an nSMG, for some n≥ 1. Consider some rule (S)→ (w) ∈ P, then, S⇒ w is an initial derivation
step. Consider any string u1A1w1 . . .unAnwn, where viwi ∈ (Ni∪Σ)∗, Ai ∈ Ni, and some rule r

r : (A1, . . . ,An)→ (v1, . . . ,vn)

where vi ∈ (Ni∪Σ)∗, for 1≤ i≤ n. Then, Gn makes a derivation step by the rule r

w = u1A1w1 . . .unAnwn⇒ u1v1w1 . . .unvnwn

The transitive and transitive and reflexive closures are defined as stated in the section 2. Subsequently,

L(Gn) = {x | S⇒∗ x,x ∈ Σ
∗}

is the language generated by Gn. The family of all languages generated by nSMGs is denoted by
nSM.

Definition 3. Consider Gn from the previous definition and the derivation step performed by the
rule r. Giving additional restrictions we define three modes of leftmost derivations:

(1) Ai /∈ alph(ui), for 1≤ i≤ n.

(2) If
w = u′1B1w′1u′2B2w′2 . . .U

′
nBnW ′n

where u′i,w
′
i ∈ (Ni∪Σ)∗, Bi ∈Ni, and for some j≤ n: |u′i|= |ui|, i < j, |u′j|< |u j|, then, in P, there

is no applicable rule
(B1,B2, . . . ,Bn)→ (x1,x2, . . . ,xn)

(3) Ni∩ alph(ui) = /0, for 1≤ i≤ n.

If the derivation step is performed by the leftmost mode k derivations, we write k⇒. nSMG using
leftmost mode k derivations is denoted by k`nSMG and the family of all languages of k`nSMGs by
k`nSM.



Definition 4. Let
Gn = (N1,N2, . . . ,Nn,Σ,P,S)

be an nSMG, for some n≥ 1. Let R be the set of all rules (not only from P) of the following form

(A1,A2, . . . ,A j, . . . ,An)→ (v1,v2, . . . ,A j, . . . ,vn)

where Ai ∈ Ni, vi ∈ (Ni∪Σ)∗, for 1≤ i≤ n, 1≤ j ≤ n, for all A j ∈ N j. For brevity, we denote R

(A1,A2, . . . ,A j−1,−,A j+1, . . . ,An)→ (v1,v2, . . . ,v j−1,−,v j+1 . . . ,vn)

4 RESULTS

In this section, we investigate the generative power of simple matrix grammars with the defined
derivation modes with respect to the number of components. Mode 1 and mode 3 of leftmost deriva-
tions were already studied before, therefore, due to the shortage of space, only the achieved results
with references are briefly stated.

Context-free grammar is in fact 1SMG, therefore, the next corollary can be trivially proven.

Corollary 1. i`1SM = CF, for i ∈ {1,2,3}.

4.1 MODE 1

In [1] and [2], it was proved, 1`nSM ⊂ 1`n+1SM, thus it is not possible to find some limit k of the
number of components, such that 1`iSM⊆ 1`kSM, for any i≥ 0. More precisely, it was proved

CF = 1`1SM⊆ 1`2SM⊆ 1`3SM⊆ ·· · ⊂ CS

4.2 MODE 2

Lemma 1. Consider any recursively enumerable language L. Then, there exists 2`3SMG G, where
L(G) = L.

Proof. Let L ⊆ Σ∗ be any recursively enumerable language. L can be represented as L = h(L1 ∩
L2), where h : T ∗ → Σ∗ is a morphism and L1 and L2 are two context-free languages. Then, there
exist context-free grammars Gi = (Ni,T,Pi,Si), where L(Gi) = Li, for i = 1,2. Without any loss of
generality, assume that N1∩N2 = /0. Let T = {a1, . . . ,an} and 0,1,0,1,S3,F,X /∈ (N1∪N2∪T ∪Σ) be
the new symbols. Consider the morphisms

(1) c : ai 7→ 10i; c : ai 7→ 10i;

(2) π1 : N1∪T 7→ N1∪Σ∪{0,1},{
A 7→ A, A ∈ N1,
a 7→ h(a)c(a), a ∈ T ;

(3) π2 : N2∪T 7→ N2∪{0,1},{
A 7→ A, A ∈ N2,
a 7→ c(a), a ∈ T ;

(4) o : a 7→ a,a ∈ {0,1};

(5) t1 : Σ∪{0,1}→ {0,1,ε},{
a 7→ a, a ∈ {0,1},
a 7→ ε, a /∈ {0,1};

(6) t2 : Σ∪{0,1}→ Σ∪{ε},{
a 7→ ε, a ∈ {0,1},
a 7→ a, a /∈ {0,1}.



Finally, let G = (N′1,N
′
2,N

′
3,Σ,P,S) be 2`3SMG, where S /∈ N′1∪N′2∪N′3 and

• N′1 = N1∪{0,1}

• N′2 = N2∪{0,1}

• N′3 = {S3,F,X}

Construct P as follows. Initially, set P = /0. Perform (1) through (5), given next:

(1) add (S)→ (S1S2S3) to P;

(2) for each (A1)→ (w1)∈ P1 and for each (A2)→ (w2)∈ P2, add (A1,A2,S3)→ (π1(w1),π2(w2),F)
to P;

(3) for each (A1)→ (w1) ∈ P1, add (A1,−,S3)→ (π1(w1),−,S3) to P;

(4) for each (A2)→ (w2) ∈ P2, add (−,A2,S3)→ (−,π2(w2),S3) to P;

(5) add

(a) (0,0,F)→ (ε,ε,F),
(b) (1,1,F)→ (ε,ε,F),
(c) (0,1,F)→ (ε,ε,X),
(d) (1,0,F)→ (ε,ε,X),
(e) (0,0,F)→ (ε,ε,ε) to P.

Every derivation of G starts with the application of the rule from (1). Next, G simulates the leftmost
derivations of both G1, G2, respectively, by the rules from (2) through (4). The rules from (2) simu-
lates applications of some rules simultaneously in both G1 and G2, while the rules from (3) and (4)
only in G1 or G2, respectively, until any rule from (2) is applied.

S 2⇒ S1S2S3 2⇒∗ w1w2F

Then, the rules from (5) are the only applicable, thus, without any loss of generality, we suppose
alph(w1) = {0,1}∪Σ and alph(w2) = {0,1}. Additionally, since the nonterminals from {0,1,0,1}
are erased one by one simultaneously from both w1, w2, respectively, the derivation, where |t1(w1)| 6=
|w2|, is obviously not terminating.

Notice, hereafter, there is always applicable rule for any combination of leftmost nonterminals, how-
ever, application of the rules from (5c) and (5d) inserts the symbol X and blocks the derivation.

Consider two possible cases:

(1) t1(w1) = t1(o(w2)). Then, t2(w1) ∈ L and by the sequence of applications of the rules from (5a)
and (5b) and finally the rule from (5e)

w1w2F 2⇒∗ w00F 2⇒ w,w = t2(w1)

(2) t1(w1) 6= t1(o(w2)). Then, t2(w1) /∈ L and w1 = uav, w2 = ua′v′, where a 6= o(a′). By the rules
from (5a) and (5b)

w1w2F 2⇒∗ ava′v′F

Next, the rule from (5c) or (5d) is the only applicable, which blocks the derivation and no terminal
string can be generated.

We covered all possibilities and the lemma holds.

Corollary 2. 2`3SM = RE



4.3 MODE 3

In [3], the next corollary was proved.

Corollary 3. 3`2SM = RE.

5 CONCLUSION

This study is part of more extensive work, which is currently being prepared and will cover all de-
fined leftmost derivation modes in greater detail. Additionally, it seems the presented result can be
improved, which is going to be the aim of the future effort.
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