
BASIC PROPERTIES OF N–LANGUAGES

Martin Čermák
Doctoral Degree Programme (3), FIT BUT

E-mail: icermak@fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

Abstract: This paper investigates theory of n–languages, where n–languages are given by sets of n–
tuples of strings. In the present paper, two n–accepting move–restricted automata systems are defined.
The automata systems are given by pushdown or finite automata with move–restricting set. By this
set, the systems control which moves can be used at the same time. The paper discuses some basic
properties of the class of n–languages defined by the automata systems.

Keywords: finite automata, pushdown automata, automata system, n–language, closure properties,
control computation

1 INTRODUCTION

The theory of formal languages investigates various formal model systems using several cooperating
components (see [1, 4, 7, 8]). Usually, the systems define ordinary formal languages. Among them,
it is a canonical multigenerative context–free grammar system (see [5, 3, 2]), where each compo-
nent generates its own string—that is, the grammar system generates n–touple of string (so–called
n–string), and only if the generation succeed, then final strings are given from the n–string by a de-
fined operation on the n–strings. A similar approaches was applied on pushdown automata, when
two type of n–accepting restricted pushdown automata systems, so that the systems accept n–strings
instead of ordinary strings, was defined in [9]. The n–accepting automata systems and the canonical
multigenerative grammar systems open the new area of the formal language theory. This paper con-
tinues with researching this type of systems by introducing n–accepting finite automata system, and
discuses some basic properties of classes of so–called n–languages, which finite automata systems
can recognize. Specifically, this paper investigates some closure properties and relationship between
the class of n–languages defined by n–accepting restricted finite automata systems and the class of
n–languages defined by pushdown automata systems.

2 PRELIMINARIES

In this paper, we assume that the reader is familiar with formal language theory (see [6]).

For a set, Q, |Q| denotes the cardinality of Q. For an alphabet, V , V ∗ represents the free monoid
generated by V . The identity of V ∗ is denoted by ε. Set V+ =V ∗−{ε}; algebraically, V+ is thus the
free semigroup generated by V . For w ∈V ∗, |w| denotes the length of w, wR denotes the mirror image
of w.

A finite automaton is a five–tuple M =(Q,Σ,δ,q0,F), where Q is a finite set of states, Σ is an alphabet,
q0 ∈ Q is the initial state, δ is a finite set of rules of the form qa→ p, where p,q ∈ Q, a ∈ Σ∪{ε},
F ⊆Q is a set of final states. A configuration of M is any word from QΣ∗. For any configuration qay,
where y ∈ Σ∗, q ∈ Q and any qa→ p ∈ δ, M makes a move from configuration qay to configuration
py according to qa→ p, written as qay⇒ py [qa→ p], or, simply, qay⇒ py. If x,y∈QΣ∗ and m > 0,

then x⇒m y if there exists a sequence x0⇒ x1⇒ . . .⇒ xm, where x0 = x and xm = y. Then we say
x⇒+ y if there exists m > 0 such that x⇒m y and x⇒∗ y if x = y or x⇒+ y. If w ∈ Σ∗ and q0w⇒∗ f ,
where f ∈ F , then w is accepted by M and q0w⇒∗ f is an acceptance of w in M. The language of M
is defined as L(M) = {w ∈ Σ∗ : q0w⇒∗ f is an acceptance of w}.

A pushdown automaton is a septuple M = (Q,Σ,Γ,δ,q0,Z0, /0), where Q is a finite set of states, Σ is
an alphabet, q0 ∈ Q is the initial state, Γ is a pushdown alphabet, δ is a finite set of rules of the form
Zqa→ γp, where p,q ∈ Q, Z ∈ Γ, a ∈ Σ∪{ε}, γ ∈ Γ∗ and Z0 ∈ Γ is the initial pushdown symbol. A
configuration of M is any word from Γ∗QΣ∗. For any configuration xAqay, where x∈Γ∗, y∈Σ∗, q∈Q
and any Aqa→ γp ∈ δ, M makes a move from configuration xAqay to configuration xγpy according
to Aqa→ γp, written as xAqay⇒ xγpy [Aqa→ γp], or, simply, xAqay⇒ xγpy. If x,y ∈ Γ∗QΣ∗ and
m > 0, then x⇒m y if there exists a sequence x0⇒ x1⇒ . . .⇒ xm, where x0 = x and xm = y. Then
we say x⇒+ y if there exists m > 0 such that x⇒m y and x⇒∗ y if x = y or x⇒+ y. If w ∈ Σ∗ and
Z0q0w⇒∗ f , where f ∈Q, then w is accepted by M and Z0q0w⇒∗ f is an acceptance of w in M. The
language of M is defined as L(M) = {w ∈ Σ∗ : Z0q0w⇒∗ f is an acceptance of w}.

3 DEFINITIONS

3.1 n–ACCEPTING AUTOMATA SYSTEMS

An n–accepting move–restricted finite automata system (n–MAMFA) and n–accepting move–restric-
ted pushdown automata system (n–MAMPDA) are n+ 1–tuples ϑ = (M1 . . . ,Mn,Ψ) with Mi as a
finite automaton and pushdown automaton for all i = 1, . . . ,n, respectively, and with Ψ as a finite set
of n–tuples of the form (r1, . . . ,rn), where for each j = 1, . . . ,n, r j ∈ δ j in M j.

3.2 n–CONFIGURATION

Let n be a positive integer, ϑ = (M1, . . . ,Mn,Ψ) be an n–MAMFA or n–MAMPDA. An n–configura-
tion is defined as an n-tuple χ = (x1, . . . ,xn), where for all i = 1, . . . ,n, xi is a configuration of Mi.

3.3 MOVE

Let n be a positive integer, ϑ = (M1, . . . ,Mn,Ψ) be an n–MAMFA or n–MAMPDA. Let χ = (x1, . . . ,
xn) and χ′=(x′1, . . . ,x

′
n) be two n-configurations, for all i= 1, . . . ,n, xi⇒ x′i[ri] in Mi, and (r1, . . . ,rn)∈

Ψ. Then, ϑ moves from n–configuration χ to χ′, denoted χ ` χ′, and in the standard way, `∗ and `+
denote the transitive-reflexive and the transitive closure of `, respectively.

3.4 n–LANGUAGE OF n–MAMFA

Let n be a positive integer, ϑ = (M1, . . . ,Mn,Ψ) be an n–MAMFA and all i = 1, . . . ,n, Mi = (Qi,Γi,δi,
si,Fi) be a finite automaton. Let χ0 =(s1ω1, . . . ,snωn) be the start n–configuration and χ f =(q1, . . . ,qn)

be a finish n–configuration of n–MAMFA, where for all i = 1, . . . ,n, qi ∈ Fi, ωi ∈ Σ∗. The n–language
of n–accepting finite automata system is defined as n-L(ϑ) = {(ω1, . . . ,ωn) : χ0 `∗ χ f }.

3.5 n–LANGUAGE OF n–MAMPDA

Let n be a positive integer, ϑ = (M1, . . . ,Mn,Ψ) be an n–MAMPDA and for all i = 1, . . . ,n, Mi =
(Qi,Σ,Γi,δi, si,zi,0, /0) be a pushdown automaton accepting input strings by empty pushdown. Let
χ0 = (z1,0s1ω1, . . . ,zn,0snωn) be the start n–configuration and χ f = (q1, . . . ,qn) be a finish n–configu-
ration of n–MAMPDA, where for all i = 1, . . . ,n, qi ∈ Qi, ωi ∈ Σ∗. The n–language of n–accepting
pushdown automata system is defined as n-L(ϑ) = {(ω1, . . . ,ωn) : χ0 `∗ χ f }.

3.6 CLASSES OF n–LANGUAGES

• L (n–MAMFA) = {n–L : n–L is an n–language of n–MAMFA}

• L (n–MAMPDA) = {n–L : n–L is an n–language of n–MAMPDA}

4 RESULTS

4.1 THEOREM

If L1 and L2 ∈L (n–MAMFA), then L1∪L2 ∈L (n–MAMFA).

Proof: Consider two n–languages L1 and L2. If L1 and L2 ∈ L (n–MAMFA), then there are n–
MAMFAs, ϑ1 =(M1,1, . . . ,M1,n,Ψ1) and ϑ2 =(M2,1, . . . , M2,n,Ψ2), such that L1 = L(ϑ1), L2 = L(ϑ2)
and for all i = 1,2 and j = 1, . . . ,n, Mi, j = (Qi, j,Σi, j,δi, j,si, j,Fi, j) is a component of ϑi. For these two
automata systems, we can construct ϑ12 = (M12,1, . . . ,M12,n,Ψ12), with M12, j = (Q12, j,Σ12, j,δ12, j,
s12, j,F12, j)), in the following way: for all i = 1,2 and j = 1, . . . ,n, Q12, j = Q1, j∪Q2, j∪{s12, j}, where
s12, j is the new start state of jth automaton, δ12, j = δ1, j∪δ2, j∪{p1, j : s12, j→ s1, j, p2, j : s12, j→ s2, j},
Σ12, j = Σ1, j ∪Σ2, j, F12, j = F1, j ∪F2, j, and Ψ12 = Ψ1∪Ψ2∪{(p1,1, . . . , p1,n),(p2,1, . . . ,(p2,n)}. From
set Ψ12 follows that the first move has to be (s12,1ω1, . . . ,s12,nωn) ` (si,1ω1, . . . , si,nωn) for i = 1,2,
and for ω j ∈ Σ12, j with j = 1, . . . ,n. Therefore, (ω1, . . . ,ωn) is in L(ϑ12) iff (ω1, . . . ,ωn) ∈ L(ϑ1) or
(ω1, . . . ,ωn) ∈ L(ϑ2)—that is, (ω1, . . . ,ωn) ∈ L(ϑ12) iff (ω1, . . . ,ωn) ∈ L1∪L2. ut

4.2 LEMMA

For n≥ 2, n–language n–L = {(aib j,a jbi(,ε)(n−2)) : i, j = 0,1, . . . ,m} is not in L (n–MAMFA).

Proof Idea: From definition of n–accepting move–restricted finite automata system, it can be seen
that only chance how to compare symbols through components is read them step by step at the same
time (or in a quasi parallel way). Hence, for comparing as in the first component and bs in the
second one, the second component has to skip all as, and then the system can compare as and bs.
After this, there is no possibility how to compare as in the second component with bs in the first
component because finite automata can not be returned on the start position. Similar problem becomes
when the system starts with comparing bs in the first component and as in the second one. The
other components can not help, because they read no input symbols. Hence, n–L is not belong to
L (n–MAMFA). ut

4.3 COROLLARY

L (n–MAMFA) for all n≥ 2, is not close under intersection.

Proof: Consider two 2–languages L1 = {(aib j,a jbk) : i, j,k ≥ 0} and L2 = {(aib j,akbi) : i, j,k ≥ 0}.
Both of them belong to L (n–MAMFA), because we can construct 2–MAMFAs ϑ1 = (M1,M2,Ψ1)
and ϑ2 = (M1,M2,Ψ2) such that L(ϑ1) = L1 and L(ϑ2) = L2. All four automata are given by the
definition M = ({q1,q2},{a,b},{r1 : q1a→ q1,r2 : q1 → q1,r3 : q1b→ q2,r4 : q2b→ q2,r5 : q2 →
q2},si,{q1, q2}), and Ψ1 = {(r1,r2),(r3,r1), (r4,r1),(r5,r3),(r5,r4)} and Ψ2 = {(p,q) : (q, p)∈Ψ1}.
The intersection of L(ϑ1) and L(ϑ2) is 2–language L3 = {(aib j,a jbi) : i, j = 0,1, . . . ,m}. Lemma 4.2
says that L3 6∈L (n–MAMFA), and therefore, L (2–MAMFA) is not close under intersection.

In general, for n ≥ 2, consider n–languages K1 = {(aib j,a jbk(,ε)n−2) : i, j,k ≥ 0} and K2 = {(aib j,

akbi(,ε)n−2) : i, j,k ≥ 0}. From Lemma 4.2, K1∩K2 6∈L (n–MAMFA). ut

4.4 COROLLARY

L (n–MAMFA) for all n≥ 2 is not close under complementation.

Proof: By contradiction. Suppose that L (n–MAMFA) for all n≥ 2 is close under complementation.
Let L1,L2 ∈ L (n–MAMFA). From Theorem 4.1 it follows that L1 ∪L2 ∈ L (n–MAMFA), and by
supposition, (L1∪L2) ∈L (n–MAMFA) as well. From De Morgan’s law, (L1∪L2) = (L1∩L2), but
it is contradiction, because L (n–MAMFA) for all n≥ 2, is not close under intersection. ut

4.5 COROLLARY

L (n–MAMFA)(L (n–MAMPDA).

Proof: The inclusion L (n–MAMFA)⊆L (n–MAMPDA) is clear from the definition of n–MAMFA

and n–MAMPDA. It remains to prove that L (n–MAMFA) 6= L (n–MAMPDA).

Consider 2–MAMPDA, ϑ = (M1,M2,Ψ1) with Ψ = {(1,1),(2,2),(3.2),(4,3),(5,3),(6,3), (7,3),
(8,4),(9,1)}) and the pushdown automata defined in the following way: M1 = ({s,q}, {a,b},{#,a},
{1.#s→ s,2.#sa→ #as,3.asa→ aas,4.#sb→ #q,5.asb→ #q,6.#qb→ #q,7.aqb → #q,8.aq→ q,
9.#q→ q},s,#, /0) and M2 = ({s},{a,b},{#},{1.#s→ s,2.#s→ #s,3.#sa→ #s,4.#sb→ #s},s,#, /0).
It is not hard to see that ϑ define 2–language L = {(aib j,a jbi) : i, j = 0,1, . . . ,m} and works in this
way: first, automaton M2 loops in state s and reads no symbol, while M1 shifts all as onto the push-
down. After pushing all as from the M1’s input onto the pushdown, M1 and M2 read bs and as,
respectively, and by reading them at the same time, automata compare their number. If there is more
as in M2’s input than bs in M1’s input, then the automata system is stoped and input is not accepted.
Otherwise, M1 skips to the other state and ϑ continues with comparing a’s on the M1’s pushdown and
b’s in the M2’s input by removing as from the pushdown in M1 and reading b’s from M2’s input. Only
if the input was of the form (aib j,a jbi) with i, j = 0,1, . . . ,m, the automata system removes symbols #
from M1’s and M2’s pushdowns, and ϑ accepts. Because Lemma 4.2 says that L = {(aib j,a jbi) : i, j =
0,1, . . . ,m} is not in L (2–MAMFA), L (2–MAMFA) 6= L (2–MAMPDA). In general, for n ≥ 2,
there are n–languages L = {(aib j,a jbi(,ε)(n−2)) : i, j = 0,1, . . . ,m}. These n–languages can be given
by n–MAMPDA, where the first two components are defined in the same way as M1 and M2 was. The
other components loops without reading any symbols. Only in the last step, automata remove symbols
from their pushdowns. Hence, L = {(aib j,a jbi(,ε)(n−2)) : i, j = 0,1, . . . ,m} ∈L (n–MAMPDA)—
that is, L (n–MAMFA) 6= L (n–MAMPDA). ut

4.6 THEOREM

If L1 and L2 ∈L (n–MAMFA), then L1 �L2 ∈L (n–MAMFA), where L1 �L2 = {(w1w′1, . . . ,wnw′n) :
(w1, . . . ,wn) ∈ L1 and (w′1, . . . ,w

′
n) ∈ L2}.

Proof: Consider two n–languages L1 and L2. If L1 and L2 ∈ L (n–MAMFA), then there are n–
MAMFAs, ϑ1 =(M1,1, . . . ,M1,n,Ψ1) and ϑ2 =(M2,1, . . . , M2,n,Ψ2), such that L1 = L(ϑ1), L2 = L(ϑ2)
and for all i = 1,2 and j = 1, . . . ,n, Mi, j = (Qi, j,Σi, j,δi, j,si, j,Fi, j) is a component of ϑi. For these two
automata systems, we can construct ϑ12 = (M12,1, . . . ,M12,n,Ψ12), with M12, j = (Q12, j,Σ12, j,δ12, j,
s1, j,F2, j)), in the following way: for every i = 1,2 and j = 1, . . . ,n, Q12, j = Q1, j∪Q2, j, δ12, j = δ1, j∪
δ2, j∪{p j. f j→ s2, j : f j ∈ F1, j}, Ψ12 = Ψ1∪Ψ2∪{(p1, . . . , pn)}, and Σ12, j = Σ1, j∪Σ2, j. From Defini-
tion 3.4, (w1, . . . ,wn)∈ L1 iff (s1,1w1, . . . ,s1,nwn) `∗ (f1, . . . , fn), where for all i = 1, . . . ,n, fi ∈ F1,i, in
ϑ1. Clearly, (s1,1w1, . . . ,s1,nwn) `∗ (f1, . . . , fn) in ϑ12 as well, and obviously, (s1,1w1w′1, . . . ,s1,nwnw′n)
`∗ (f1w′1, . . . , fnw′n). As (w′1, . . . ,w

′
n) ∈ L2 and because (f1→ s2,1, . . . ,s2,n) ∈Ψ12, (f1w′1, . . . , fnw′n) `

(s2,1w′1, . . . ,s2,nw′n). Naturaly, (s2,1w′1, . . . ,s2,nw′n)`∗ (f ′1, . . . , f ′n) with f ′i ∈F2,i in ϑ2. Hence, (s1,1w1w′1,

. . . ,s1,nwnw′n) `∗ (f ′1, . . . , f ′n) in ϑ12. The theorem holds. ut

5 CONCLUSION

In this paper, we defined the new type of n–accepting move–restricted automata system with finite
automata. On the class of n–languages defined by the system, we showed some fundamental closure
properties. Specifically, the class of n–languages defined by n–accepting move–restricted pushdown
automata system is closed over concatenation and union, and on the other hand, it is not closed over
intersection and complement. Futhermore, we showed that the n–accepting move–restricted finite
automata system is weaker than the n–accepting move–restricted pushdown automata system. Beside
of examined closure properties, there are many other closer properties, which make an open research
area. Especially, very useful it can be closure properties over n–union, n–intersection, and n–shuffle,
where n before operators means that operators are used on each component. For example, n–union of
L1 = {(w1, . . . ,wn)} and L2 = {(w′1, . . . ,w′n)} is n–language L3 = {(x1, . . . ,xn) : xi ∈{wi,w′i} for all i=
1, . . . ,n}.

6 ACKNOWLEDGEMENTS

This work was supported by the research plan MSM0021630528 and by MŠMT grant MEB041003.

REFERENCES

[1] R. Alur. Formal analysis of hierarchical state machines. Lecture Notes in Computer Science,
2772/2004:434–435, 2004.

[2] R. Lukáš. Power of multigenerative grammar systems. In Second Doctoral Workshop on Mathe-
matical and Engineering Methods in Computer Science (MEMICS 2006), pages 99–104, 2006.

[3] R. Lukáš and A. Meduna. Multigenerative grammar systems. In Pre-proceedings 1st Doctoral
Workshop on Mathematical and Engineering Methods in Comupter Science (MEMICS 2005),
pages 85–87. Faculty of Informatics MU, 2005.

[4] C. Martín and V. Mitrana. Parallel communicating automata systems. Journal of Applied Math-
ematics and Computing, pages 237–257, 2008.

[5] A. Meduna and R. Lukáš. Multigenerative grammar systems. Schedae Informaticae,
2006(15):175–188, 2006.

[6] M. Meduna. Automata and Languages: Theory and Applications. Springer-Verlag, London,
2000.

[7] M. H. ter Beek, E. Csuhaj-Varjú, and V. Mitrana. Teams of pushdown automata. Int. J. Comput.
Math., 81(2):141–156, 2004.

[8] M. Čermák. Power decreasing derivation restriction in grammar systems. In Proceedings of the
15th Conference and Competition STUDENT EEICT 2009 Volume 4, pages 385–389. Faculty of
Information Technology BUT, 2009.

[9] M. Čermák. Multilanguages and multiaccepting automata system. In Proceedings of the 16th
Conference and Competition STUDENT EEICT 2010 Volume 5, pages 146–150. Faculty of In-
formation Technology BUT, 2010.

